Parallelism-Aware Batch Scheduling

Author:

Mutlu Onur,Moscibroda Thomas

Abstract

In a chip-multiprocessor (CMP) system, the DRAM system isshared among cores. In a shared DRAM system, requests from athread can not only delay requests from other threads by causingbank/bus/row-buffer conflicts but they can also destroy other threads’DRAM-bank-level parallelism. Requests whose latencies would otherwisehave been overlapped could effectively become serialized. As aresult both fairness and system throughput degrade, and some threadscan starve for long time periods.This paper proposes a fundamentally new approach to designinga shared DRAM controller that provides quality of service to threads,while also improving system throughput. Our parallelism-aware batchscheduler (PAR-BS) design is based on two key ideas. First, PARBSprocesses DRAM requests in batches to provide fairness and toavoid starvation of requests. Second, to optimize system throughput,PAR-BS employs a parallelism-aware DRAM scheduling policythat aims to process requests from a thread in parallel in the DRAMbanks, thereby reducing the memory-related stall-time experienced bythe thread. PAR-BS seamlessly incorporates support for system-levelthread priorities and can provide different service levels, includingpurely opportunistic service, to threads with different priorities.We evaluate the design trade-offs involved in PAR-BS and compareit to four previously proposed DRAM scheduler designs on 4-, 8-, and16-core systems. Our evaluations show that, averaged over 100 4-coreworkloads, PAR-BS improves fairness by 1.11X and system throughputby 8.3% compared to the best previous scheduling technique, Stall-Time Fair Memory (STFM) scheduling. Based on simple request prioritizationrules, PAR-BS is also simpler to implement than STFM.

Publisher

Association for Computing Machinery (ACM)

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Genetic Cache: A Machine Learning Approach to Designing DRAM Cache Controllers in HBM Systems;ACM Journal on Emerging Technologies in Computing Systems;2024-07-31

2. DRAM Bender: An Extensible and Versatile FPGA-Based Infrastructure to Easily Test State-of-the-Art DRAM Chips;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2023-12

3. Hierarchical Resource Partitioning on Modern GPUs: A Reinforcement Learning Approach;2023 IEEE International Conference on Cluster Computing (CLUSTER);2023-10-31

4. Flatfish: A Reinforcement Learning Approach for Application-Aware Address Mapping;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2022-11

5. Polynesia: Enabling High-Performance and Energy-Efficient Hybrid Transactional/Analytical Databases with Hardware/Software Co-Design;2022 IEEE 38th International Conference on Data Engineering (ICDE);2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3