ASIC clouds

Author:

Taylor Michael Bedford1,Vega Luis1,Khazraee Moein2,Magaki Ikuo2,Davidson Scott1,Richmond Dustin1

Affiliation:

1. University of Washington, WA

2. UC San Diego, CA

Abstract

Planet-scale applications are driving the exponential growth of the Cloud, and datacenter specialization is the key enabler of this trend. GPU- and FPGA-based clouds have already been deployed to accelerate compute-intensive workloads. ASIC-based clouds are a natural evolution as cloud services expand across the planet. ASIC Clouds are purpose-built datacenters comprised of large arrays of ASIC accelerators that optimize the total cost of ownership (TCO) of large, high-volume scale-out computations. On the surface, ASIC Clouds may seem improbable due to high NREs and ASIC inflexibility, but large-scale ASIC Clouds have already been deployed for the Bitcoin cryptocurrency system. This paper distills lessons from these Bitcoin ASIC Clouds and applies them to other large scale workloads such as YouTube-style video-transcoding and Deep Learning, showing superior TCO versus CPU and GPU. It derives Pareto-optimal ASIC Cloud servers based on accelerator properties, by jointly optimizing ASIC architecture, DRAM, motherboard, power delivery, cooling, and operating voltage. Finally, the authors examine the impact of ASIC NRE and when it makes sense to build an ASIC Cloud.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference16 articles.

1. GreenDroid: A mobile application processor for a future of dark silicon

2. The greendroid mobile application processor: An architecture for silicon's dark future;Goulding-Hotta N.;IEEE Micro,2011

3. In-Datacenter Performance Analysis of a Tensor Processing Unit

4. Moonwalk

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The material geographies of Bitfury in Georgia: Integrating cryptoasset firms into global financial networks;Environment and Planning A: Economy and Space;2023-11-30

2. E2C: A Visual Simulator to Reinforce Education of Heterogeneous Computing Systems;2023 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW);2023-05

3. Evaluation of FinFET in Ultra Low Power ALU;2022 IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS);2022-06-06

4. Energy efficient implementation of tensor operations using dataflow paradigm for machine learning;Advances in Computers;2022

5. Your agile open source HW stinks (because it is not a system);Proceedings of the 39th International Conference on Computer-Aided Design;2020-11-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3