Optimistic parallelism requires abstractions

Author:

Kulkarni Milind1,Pingali Keshav1,Walter Bruce2,Ramanarayanan Ganesh2,Bala Kavita2,Chew L. Paul2

Affiliation:

1. University of Texas, Austin

2. Cornell University, Ithaca, NY

Abstract

The problem of writing software for multicore processors is greatly simplified if we could automatically parallelize sequential programs. Although auto-parallelization has been studied for many decades, it has succeeded only in a few application areas such as dense matrix computations. In particular, auto-parallelization of irregular programs, which are organized around large, pointer-based data structures like graphs, has seemed intractable. The Galois project is taking a fresh look at autoparallelization. Rather than attempt to parallelize all programs no matter how obscurely they are written, we are designing programming abstractions that permit programmers to highlight opportunities for exploiting parallelism in sequential programs, and building a runtime system that uses these hints to execute the program in parallel. In this paper, we describe the design and implementation of a system based on these ideas. Experimental results for two real-world irregular applications, a Delaunay mesh refinement application and a graphics application that performs agglomerative clustering, demonstrate that this approach is promising.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A new thread-level speculative automatic parallelization model and library based on duplicate code execution;The Journal of Supercomputing;2024-03-11

2. Sortledton: a Universal Graph Data Structure;ACM SIGMOD Record;2023-06-07

3. Sortledton;Proceedings of the VLDB Endowment;2022-02

4. Conflict Abstractions and Shadow Speculation for Optimistic Transactional Objects;Programming Languages and Systems;2019

5. Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code;Mehran University Research Journal of Engineering and Technology;2017-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3