Sectored DRAM: A Practical Energy-Efficient and High-Performance Fine-Grained DRAM Architecture

Author:

Olgun Ataberk1ORCID,Bostanci F. Nisa1ORCID,Francisco de Oliveira Junior Geraldo2ORCID,Tugrul Yahya Can2ORCID,Bera Rahul2ORCID,Yaglikci Abdullah Giray2ORCID,Hassan Hasan1ORCID,Ergin Oguz3ORCID,Mutlu Onur1ORCID

Affiliation:

1. ETH Zurich, Zurich, Switzerland

2. ETH Zurich, Zurich Switzerland

3. TOBB University of Economics and Technology, Ankara Turkey

Abstract

Modern computing systems access data in main memory at coarse granularity (e.g., at 512-bit cache block granularity). Coarse-grained access leads to wasted energy because the system does not use all individually accessed small portions (e.g., words , each of which typically is 64 bits) of a cache block. In modern DRAM-based computing systems, two key coarse-grained access mechanisms lead to wasted energy: large and fixed-size (i) data transfers between DRAM and the memory controller and (ii) DRAM row activations. We propose Sectored DRAM, a new, low-overhead DRAM substrate that reduces wasted energy by enabling fine-grained DRAM data transfer and DRAM row activation. To retrieve only useful data from DRAM, Sectored DRAM exploits the observation that many cache blocks are not fully utilized in many workloads due to poor spatial locality. Sectored DRAM predicts the words in a cache block that will likely be accessed during the cache block’s residency in cache and (i) transfers only the predicted words on the memory channel by dynamically tailoring the DRAM data transfer size for the workload and (ii) activates a smaller set of cells that contain the predicted words by carefully operating physically isolated portions of DRAM rows (i.e., mats). Activating a smaller set of cells on each access relaxes DRAM power delivery constraints and allows the memory controller to schedule DRAM accesses faster. We evaluate Sectored DRAM using 41 workloads from widely used benchmark suites. Compared to a system with coarse-grained DRAM, Sectored DRAM reduces the DRAM energy consumption of highly memory intensive workloads by up to (on average) 33% (20%) while improving their performance by up to (on average) 36% (17%). Sectored DRAM’s DRAM energy savings, combined with its system performance improvement, allows system-wide energy savings of up to 23%. Sectored DRAM’s DRAM chip area overhead is 1.7% of the area of a modern DDR4 chip. Compared to state-of-the-art fine-grained DRAM architectures, Sectored DRAM greatly reduces DRAM energy consumption, does not reduce DRAM bandwidth, and can be implemented with low hardware cost. Sectored DRAM provides 89% of the performance benefits of, consumes 12% less DRAM energy than, and takes up 34% less DRAM chip area than a high-performance state-of-the-art fine-grained DRAM architecture (Half-DRAM). It is our hope and belief that Sectored DRAM’s ideas and results will help to enable more efficient and high-performance memory systems. To this end, we open source Sectored DRAM at https://github.com/CMU-SAFARI/Sectored-DRAM.

Publisher

Association for Computing Machinery (ACM)

Reference137 articles.

1. Jung Ho Ahn et al. 2009. Future scaling of processor-memory interfaces. In SC.

2. Jung Ho Ahn et al. 2009. Multicore DIMM: An energy efficient memory module with independently controlled DRAMs. IEEE Computer Architecture Letters 8 1 (2009) 5–8.

3. Tareq Alawneh, Raimund Kirner, and Catherine Menon. 2021. Dynamic row activation mechanism for multi-core systems. In CF.

4. D. B. Alpert et al. 1988. Performance trade-offs for microprocessor cache memories. IEEE Micro 8 4 (1988) 44–54.

5. AMD. 2013. BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 15h Models 00h-0Fh Processors. AMD.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3