In-network monitoring and control policy for DVFS of CMP networks-on-chip and last level caches

Author:

Chen Xi1,Xu Zheng1,Kim Hyungjun1,Gratz Paul1,Hu Jiang1,Kishinevsky Michael2,Ogras Umit2

Affiliation:

1. Texas A&M University, College Station, TX

2. Strategic CAD Labs, Intel Corporation, Hillsboro, OR

Abstract

In chip design today and for a foreseeable future, the last-level cache and on-chip interconnect is not only performance critical but also a substantial power consumer. This work focuses on employing dynamic voltage and frequency scaling (DVFS) policies for networks-on-chip (NoC) and shared, distributed last-level caches (LLC). In particular, we consider a practical system architecture where the distributed LLC and the NoC share a voltage/frequency domain that is separate from the core domain. This architecture enables the control of the relative speed between the cores and memory hierarchy without introducing synchronization delays within the NoC. DVFS for this architecture is more complex than individual link/core-based DVFS since it involves spatially distributed monitoring and control. We propose an average memory access time (AMAT)-based monitoring technique and integrate it with DVFS based on PID control theory. Simulations on PARSEC benchmarks yield a 27% energy savings with a negligible impact on system performance.

Funder

Intel Corporation

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3