Coping with type casts in C

Author:

Siff Michael1,Chandra Satish2,Ball Thomas2,Kunchithapadam Krishna3,Reps Thomas3

Affiliation:

1. Sarah Lawrence College, Broxville, NY

2. Bell Labs., Lucent Technologies, Naperville, IL

3. Univ. of Wisconsin, Madison

Abstract

The use of type casts is pervasive in C. Although casts provide great flexibility in writing programs, their use obscures the meaning of programs, and can present obstacles during maintenance. Casts involving pointers to structures (C structs) are particularly problematic, because by using them, a programmer can interpret any memory region to be of any desired type, thereby compromising C's already weak type system. This paper presents an approach for making sense of such casts, in terms of understanding their purpose and identifying fragile code. We base our approach on the observation that casts are often used to simulate object-oriented language features not supported directly in C. We first describe a variety of ways — idioms — in which this is done in C programs. We then develop a notion of physical subtyping , which provides a model that explains these idioms. We have created tools that automatically analyze casts appearing in C programs. Experimental evidence collected by using these tools on a large amount of C code (over a million lines) shows that, of the casts involving struct types, most (over 90%) can be associated meaningfully — and automatically — with physical subtyping. Our results indicate that the idea of physical subtyping is useful in coping with casts and can lead to valuable software productivity tools.

Publisher

Association for Computing Machinery (ACM)

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Safer Linux Kernel Modules Using the D Programming Language;IEEE Access;2022

2. Detecting Strict Aliasing Violations in the Wild;Lecture Notes in Computer Science;2017

3. Dynamically diagnosing type errors in unsafe code;ACM SIGPLAN Notices;2016-12-05

4. Polymorphic type inference for machine code;ACM SIGPLAN Notices;2016-08

5. Polymorphic type inference for machine code;Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation;2016-06-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3