On understanding types, data abstraction, and polymorphism

Author:

Cardelli Luca1,Wegner Peter2

Affiliation:

1. AT&T Bell Laboratories, Murray Hill, NJ

2. Brown Univ., Providence, RI

Abstract

Our objective is to understand the notion of type in programming languages, present a model of typed, polymorphic programming languages that reflects recent research in type theory, and examine the relevance of recent research to the design of practical programming languages. Object-oriented languages provide both a framework and a motivation for exploring the interaction among the concepts of type, data abstraction, and polymorphism, since they extend the notion of type to data abstraction and since type inheritance is an important form of polymorphism. We develop a λ-calculus-based model for type systems that allows us to explore these interactions in a simple setting, unencumbered by complexities of production programming languages. The evolution of languages from untyped universes to monomorphic and then polymorphic type systems is reviewed. Mechanisms for polymorphism such as overloading, coercion, subtyping, and parameterization are examined. A unifying framework for polymorphic type systems is developed in terms of the typed λ-calculus augmented to include binding of types by quantification as well as binding of values by abstraction. The typed λ-calculus is augmented by universal quantification to model generic functions with type parameters, existential quantification and packaging (information hiding) to model abstract data types, and bounded quantification to model subtypes and type inheritance. In this way we obtain a simple and precise characterization of a powerful type system that includes abstract data types, parametric polymorphism, and multiple inheritance in a single consistent framework. The mechanisms for type checking for the augmented λ-calculus are discussed. The augmented typed λ-calculus is used as a programming language for a variety of illustrative examples. We christen this language Fun because fun instead of λ is the functional abstraction keyword and because it is pleasant to deal with. Fun is mathematically simple and can serve as a basis for the design and implementation of real programming languages with type facilities that are more powerful and expressive than those of existing programming languages. In particular, it provides a basis for the design of strongly typed object-oriented languages.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference41 articles.

1. GALILEO: a strongly-typed, interactive conceptual language

2. BOOCH G. 1983. Software Engineering with Ada. Benjamin/Cummings Menlo Park Calif. BOOCH G. 1983. Software Engineering with Ada. Benjamin/Cummings Menlo Park Calif.

3. Lecture Notes in Computer Science;BRUCE K. B.

4. Lecture Notes in Computer Science;BURSTALL R.

Cited by 825 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flexible and reversible conversion between extensible records and overloading constraints for ML;Journal of Systems and Software;2024-10

2. Existential Containers in Scala;Proceedings of the 21st ACM SIGPLAN International Conference on Managed Programming Languages and Runtimes;2024-09-13

3. Approaches to Conflict-free Replicated Data Types;ACM Computing Surveys;2024-09-09

4. Deferred reference, meaning transfer or coercion? Toward a new principle of accounting for systematic uses of proper names;Synthese;2024-07-29

5. Decidable Subtyping of Existential Types for Julia;Proceedings of the ACM on Programming Languages;2024-06-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3