Efficient Bi-objective SQL Optimization for Enclaved Cloud Databases with Differentially Private Padding

Author:

Chen Yaxing1ORCID,Zheng Qinghua2ORCID,Yan Zheng3ORCID

Affiliation:

1. Northwestern Polytechnical University, China

2. Xi’an Jiaotong University, China

3. Xidian University, China

Abstract

Hardware-enabled enclaves have been applied to efficiently enforce data security and privacy protection in cloud database services. Such enclaved systems, however, are reported to suffer from I/O-size (also referred to as communication-volume)-based side-channel attacks. Albeit differentially private padding has been exploited to defend against these attacks as a principle method, it introduces a challenging bi-objective parametric query optimization (BPQO) problem and current solutions are still not satisfactory. Concretely, the goal in BPQO is to find a Pareto-optimal plan that makes a tradeoff between query performance and privacy loss; existing solutions are subjected to poor computational efficiency and high cloud resource waste. In this article, we propose a two-phase optimization algorithm called TPOA to solve the BPQO problem. TPOA incorporates two novel ideas:divide-and-conquerto separately handle parameters according to their types in optimization for dimensionality reduction;on-demand-optimizationto progressively build a set of necessary Pareto-optimal plans instead of seeking a complete set for saving resources. Besides, we introduce an acceleration mechanism in TPOA to improve its efficiency, which prunes the non-optimal candidate plans in advance. We theoretically prove the correctness of TPOA, numerically analyze its complexity, and formally give an end-to-end privacy analysis. Through a comprehensive evaluation on its efficiency by running baseline algorithms over synthetic and test-bed benchmarks, we can conclude that TPOA outperforms all benchmarked methods with an overall efficiency improvement of roughly two orders of magnitude; moreover, the acceleration mechanism speeds up TPOA by 10-200×.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

The Fundamental Research Funds for the Central Universitities

Academy of Finland

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3