Shrinkwrap

Author:

Bater Johes1,He Xi2,Ehrich William1,Machanavajjhala Ashwin3,Rogers Jennie1

Affiliation:

1. Northwestern University

2. University of Waterloo

3. Duke University

Abstract

A private data federation is a set of autonomous databases that share a unified query interface offering in-situ evaluation of SQL queries over the union of the sensitive data of its members. Owing to privacy concerns, these systems do not have a trusted data collector that can see all their data and their member databases cannot learn about individual records of other engines. Federations currently achieve this goal by evaluating queries obliviously using secure multiparty computation. This hides the intermediate result cardinality of each query operator by exhaustively padding it. With cascades of such operators, this padding accumulates to a blow-up in the output size of each operator and a proportional loss in query performance. Hence, existing private data federations do not scale well to complex SQL queries over large datasets. We introduce Shrinkwrap, a private data federation that offers data owners a differentially private view of the data held by others to improve their performance over oblivious query processing. Shrinkwrap uses computational differential privacy to minimize the padding of intermediate query results, achieving up to a 35X performance improvement over oblivious query processing. When the query needs differentially private output, Shrinkwrap provides a trade-off between result accuracy and query evaluation performance.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Experimental Study on Federated Equi-Joins;IEEE Transactions on Knowledge and Data Engineering;2024-09

2. SWAT: A System-Wide Approach to Tunable Leakage Mitigation in Encrypted Data Stores;Proceedings of the VLDB Endowment;2024-06

3. Relational Algorithms for Top-k Query Evaluation;Proceedings of the ACM on Management of Data;2024-05-29

4. Secure and Practical Functional Dependency Discovery in Outsourced Databases;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

5. TEE-based General-purpose Computational Backend for Secure Delegated Data Processing;Proceedings of the ACM on Management of Data;2023-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3