Relational Algorithms for Top-k Query Evaluation

Author:

Wang Qichen1ORCID,Luo Qiyao2ORCID,Wang Yilei3ORCID

Affiliation:

1. Hong Kong Baptist University, Hong Kong SAR, China

2. Hong Kong University of Science and Technology, Hong Kong SAR, China

3. Alibaba Cloud, Hangzhou, China

Abstract

The evaluation of top-k conjunctive queries, a staple in business analysis, often requires evaluating the conjunctive query prior to filtering the top-k results, leading to a significant computational overhead within Database Management Systems (DBMSs). While efficient algorithms have been proposed, their integration into DBMSs remains arduous. We introduce relational algorithms, a paradigm where each algorithmic step is expressed by a relational operator. This allows the algorithm to be represented as a set of SQL queries, enabling easy deployment across different systems that support SQL. We introduce two novel relational algorithms, level-k and product-k, specifically designed for evaluating top-k conjunctive queries and demonstrate that level-k achieves optimal running time for top-k free-connex queries. Furthermore, these algorithms enable easy translation into an oblivious algorithm for secure query evaluations. The presented algorithms are not only theoretically optimal but also exhibit eminent efficiency in practice. The experiment results show significant improvements, with our rewritten SQL outperforming the baseline by up to 6 orders of magnitude. Moreover, our secure implementations not only achieve substantial speedup compared to the baseline with secure guarantees but even surpass those baselines that have no secure guarantees.

Funder

Hong Kong RGC Grants

Publisher

Association for Computing Machinery (ACM)

Reference70 articles.

1. DuckDB. https://duckdb.org/.

2. PostgreSQL. https://www.postgre.org/.

3. Relational Algorithms for Top-k Query Evaluation Source Code Repository. https://github.com/lambdaSQL/TopK-CQ.

4. SNAP. https://snap.stanford.edu/snap/.

5. SparkSQL. https://spark.apache.org/sql/.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3