A New Memory-Disk Integrated System with HW Optimizer

Author:

Lee Do-Heon1,Yoon Su-Kyung1,Kim Jung-Geun1,Weems Charles C.2,Kim Shin-Dug1

Affiliation:

1. Yonsei University, Seoul, Korea

2. University of Massachusetts, Amherst, MA

Abstract

Current high-performance computer systems utilize a memory hierarchy of on-chip cache, main memory, and secondary storage due to differences in device characteristics. Limiting the amount of main memory causes page swap operations and duplicates data between the main memory and the storage device. The characteristics of next-generation memory, such as nonvolatility, byte addressability, and scaling to greater capacity, can be used to solve these problems. Simple replacement of secondary storage with new forms of nonvolatile memory in a traditional memory hierarchy still causes typical problems, such as memory bottleneck, page swaps, and write overhead. Thus, we suggest a single architecture that merges the main memory and secondary storage into a system called a Memory-Disk Integrated System (MDIS). The MDIS architecture is composed of a virtually decoupled NVRAM and a nonvolatile memory performance optimizer combining hardware and software to support this system. The virtually decoupled NVRAM module can support conventional main memory and disk storage operations logically without data duplication and can reduce write operations to the NVRAM. To increase the lifetime and optimize the performance of this NVRAM, another hardware module called a Nonvolatile Performance Optimizer (NVPO) is used that is composed of four small buffers. The NVPO exploits spatial and temporal characteristics of static/dynamic data based on program execution characteristics. Enhanced virtual memory management and address translation modules in the operating system can support these hardware components to achieve a seamless memory-storage environment. Our experimental results show that the proposed architecture can improve execution time by about 89% over a conventional DRAM main memory/HDD storage system, and 77% over a state-of-the-art PRAM main memory/HDD disk system with DRAM buffer. Also, the lifetime of the virtually decoupled NVRAM is estimated to be 40% longer than that of a traditional hierarchy based on the same device technology.

Funder

Industry-Academy joint research program between Samsung Electronics and Yonsei University

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3