Trust-Aware Decision Making for Human-Robot Collaboration

Author:

Chen Min1,Nikolaidis Stefanos2,Soh Harold1,Hsu David1,Srinivasa Siddhartha3

Affiliation:

1. National University of Singapore, Singapore

2. University of Southern California, Los Angeles, CA

3. University of Washington, Seattle, WA

Abstract

Trust in autonomy is essential for effective human-robot collaboration and user adoption of autonomous systems such as robot assistants. This article introduces a computational model that integrates trust into robot decision making. Specifically, we learn from data a partially observable Markov decision process (POMDP) with human trust as a latent variable. The trust-POMDP model provides a principled approach for the robot to (i) infer the trust of a human teammate through interaction, (ii) reason about the effect of its own actions on human trust, and (iii) choose actions that maximize team performance over the long term. We validated the model through human subject experiments on a table clearing task in simulation (201 participants) and with a real robot (20 participants). In our studies, the robot builds human trust by manipulating low-risk objects first. Interestingly, the robot sometimes fails intentionally to modulate human trust and achieve the best team performance. These results show that the trust-POMDP calibrates trust to improve human-robot team performance over the long term. Further, they highlight that maximizing trust alone does not always lead to the best performance.

Funder

Singapore Ministry of Education

Office of Naval Research

U.S. National Institutes of Health R01

U.S. National Science Foundation NRI

U.S. National Science Foundation CPS

National University of Singapore

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Human-Computer Interaction

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3