Context-Aware Recommendation Using Role-Based Trust Network

Author:

Hong Liang1,Zou Lei2,Zeng Cheng1,Zhang Luming3,Wang Jian1,Tian Jilei4

Affiliation:

1. Wuhan University

2. Peking University

3. Hefei University of Technology

4. Nokia Research Center, Beijing

Abstract

Recommender systems have been studied comprehensively in both academic and industrial fields over the past decade. As user interests can be affected by context at any time and any place in mobile scenarios, rich context information becomes more and more important for personalized context-aware recommendations. Although existing context-aware recommender systems can make context-aware recommendations to some extent, they suffer several inherent weaknesses: (1) Users’ context-aware interests are not modeled realistically, which reduces the recommendation quality; (2) Current context-aware recommender systems ignore trust relations among users. Trust relations are actually context-aware and associated with certain aspects (i.e., categories of items) in mobile scenarios. In this article, we define a term role to model common context-aware interests among a group of users. We propose an efficient role mining algorithm to mine roles from a “user-context-behavior” matrix, and a role-based trust model to calculate context-aware trust value between two users. During online recommendation, given a user u in a context c , an efficient weighted set similarity query (WSSQ) algorithm is designed to build u ’s role-based trust network in context c . Finally, we make recommendations to u based on u ’s role-based trust network by considering both context-aware roles and trust relations. Extensive experiments demonstrate that our recommendation approach outperforms the state-of-the-art methods in both effectiveness and efficiency.

Funder

National High-tech R&D Program

Shenzhen development Foundation

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3