Novel Semantic-Based Probabilistic Context Aware Approach for Situations Enrichment and Adaptation

Author:

Lakehal Abderrahim,Alti Adel,Roose PhilippeORCID

Abstract

This paper aims at ensuring an efficient recommendation. It proposes a new context-aware semantic-based probabilistic situations injection and adaptation using an ontology approach and Bayesian-classifier. The idea is to predict the relevant situations for recommending the right services. Indeed, situations are correlated with the user’s context. It can, therefore, be considered in designing a recommendation approach to enhance the relevancy by reducing the execution time. The proposed solution in which four probability-based-context rule situation items (user’s location and time, user’s role, their preferences and experiences) are chosen as inputs to predict user’s situations. Subsequently, the weighted linear combination is applied to calculate the similarity of rule items. The higher scores between the selected items are used to identify the relevant user’s situations. Three context parameters (CPU speed, sensor availability and RAM size) of the current devices are used to ensure adaptive service recommendation. Experimental results show that the proposed approach enhances accuracy rate with a high number of situations rules. A comparison with existing recommendation approaches shows that the proposed approach is more efficient and decreases the execution time.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3