Managing uncertainty in sensor database

Author:

Cheng Reynold1,Prabhakar Sunil1

Affiliation:

1. Purdue University

Abstract

Sensors are often employed to monitor continuously changing entities like locations of moving objects and temperature. The sensor readings are reported to a centralized database system, and are subsequently used to answer queries. Due to continuous changes in these values and limited resources (e.g., network bandwidth and battery power), the database may not be able to keep track of the actual values of the entities, and use the old values instead. Queries that use these old values may produce incorrect answers. However, if the degree of uncertainty between the actual data value and the database value is limited, one can place more confidence in the answers to the queries. In this paper, we present a frame-work that represents uncertainty of sensor data. Depending on the amount of uncertainty information given to the application, different levels of imprecision are presented in a query answer. We examine the situations when answer imprecision can be represented qualitatively and quantitatively. We propose a new kind of probabilistic queries called Probabilistic Threshold Query , which requires answers to have probabilities larger than a certain threshold value. We also study techniques for evaluating queries under different details of uncertainty, and investigate the tradeoff between data uncertainty, answer accuracy and computation costs.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Knowledge Graph-Based Framework to Support the Human-Centric Approach;Springer Series in Advanced Manufacturing;2024

2. Query Processing Over RelationalCross Model in Uncertain and Probabilistic Databases;2023 Third International Conference on Artificial Intelligence and Smart Energy (ICAIS);2023-02-02

3. Uncertainty Support in the Spectral Information System SPECCHIO;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2023

4. Generative Datalog with Continuous Distributions;Journal of the ACM;2022-11-17

5. A Study for Advanced Visualization of Sensing Data & Meta Data based WSN;International Journal of Engineering and Advanced Technology;2021-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3