Energy Analysis of Hardware and Software Range Partitioning

Author:

Wu Lisa1,Polychroniou Orestis1,Barker Raymond J.1,Kim Martha A.1,Ross Kenneth A.1

Affiliation:

1. Columbia University, New York, NY

Abstract

Data partitioning is a critical operation for manipulating large datasets because it subdivides tasks into pieces that are more amenable to efficient processing. It is often the limiting factor in database performance and represents a significant fraction of the overall runtime of large data queries. This article measures the performance and energy of state-of-the-art software partitioners, and describes and evaluates a hardware range partitioner that further improves efficiency. The software implementation is broken into two phases, allowing separate analysis of the partition function computation and data shuffling costs. Although range partitioning is commonly thought to be more expensive than simpler strategies such as hash partitioning, our measurements indicate that careful data movement and optimization of the partition function can allow it to approach the throughput and energy consumption of hash or radix partitioning. For further acceleration, we describe a hardware range partitioner, or HARP, a streaming framework that offers a seamless execution environment for this and other streaming accelerators, and a detailed analysis of a 32nm physical design that matches the throughput of four to eight software threads while consuming just 6.9% of the area and 4.3% of the power of a Xeon core in the same technology generation.

Funder

Oracle

Division of Information and Intelligent Systems

Division of Computing and Communication Foundations

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Compositional Dataflow Circuits;ACM Transactions on Embedded Computing Systems;2019-01-31

2. Compositional dataflow circuits;Proceedings of the 15th ACM-IEEE International Conference on Formal Methods and Models for System Design;2017-09-29

3. Adaptive metadata rebalance in exascale file system;The Journal of Supercomputing;2016-07-09

4. Integrating frequent pattern clustering and branch-and-bound approaches for data partitioning;Information Sciences;2016-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3