Adaptive and Hierarchical Runtime Manager for Energy-Aware Thermal Management of Embedded Systems

Author:

Das Anup1,Al-Hashimi Bashir M.2,Merrett Geoff V.2

Affiliation:

1. University of Southampton

2. University of Southampton, Southampton, United Kingdom

Abstract

Modern embedded systems execute applications, which interact with the operating system and hardware differently depending on the type of workload. These cross-layer interactions result in wide variations of the chip-wide thermal profile. In this article, a reinforcement learning-based runtime manager is proposed that guarantees application-specific performance requirements and controls the POSIX thread allocation and voltage/frequency scaling for energy-efficient thermal management. This controls three thermal aspects: peak temperature, average temperature, and thermal cycling. Contrary to existing learning-based runtime approaches that optimize energy and temperature individually, the proposed runtime manager is the first approach to combine the two objectives, simultaneously addressing all three thermal aspects. However, determining thread allocation and core frequencies to optimize energy and temperature is an NP-hard problem. This leads to exponential growth in the learning table (significant memory overhead) and a corresponding increase in the exploration time to learn the most appropriate thread allocation and core frequency for a particular application workload. To confine the learning space and to minimize the learning cost, the proposed runtime manager is implemented in a two-stage hierarchy: a heuristic-based thread allocation at a longer time interval to improve thermal cycling, followed by a learning-based hardware frequency selection at a much finer interval to improve average temperature, peak temperature, and energy consumption. This enables finer control on temperature in an energy-efficient manner while simultaneously addressing scalability, which is a crucial aspect for multi-/many-core embedded systems. The proposed hierarchical runtime manager is implemented for Linux running on nVidia’s Tegra SoC, featuring four ARM Cortex-A15 cores. Experiments conducted with a range of embedded and cpu-intensive applications demonstrate that the proposed runtime manager not only reduces energy consumption by an average 15% with respect to Linux but also improves all the thermal aspects—average temperature by 14°C, peak temperature by 16°C, and thermal cycling by 54%.

Funder

Engineering and Physical Sciences Research Council (EPSRC) Programme

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Monitoring the performance of multicore embedded systems without disrupting its timing requirements;Design Automation for Embedded Systems;2023-12

2. Learning-Oriented Reliability Improvement of Computing Systems From Transistor to Application Level;2023 Design, Automation & Test in Europe Conference & Exhibition (DATE);2023-04

3. An SMDP-based approach to thermal-aware task scheduling in NoC-based MPSoC platforms;Journal of Parallel and Distributed Computing;2022-07

4. DFSynthesizer: Dataflow-based Synthesis of Spiking Neural Networks to Neuromorphic Hardware;ACM Transactions on Embedded Computing Systems;2022-05-28

5. Reliability Assessment of Many-Core Dynamic Thermal Management;2022 IEEE International Symposium on Circuits and Systems (ISCAS);2022-05-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3