A Low Power In-DRAM Architecture for Quantized CNNs using Fast Winograd Convolutions
Author:
Affiliation:
1. TU Kaiserslautern, Germany
2. Fraunhofer IESE, Germany
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3422575.3422790
Reference67 articles.
1. A. Agrawal A. Jaiswal D. Roy B. Han G. Srinivasan A. Ankit and K. Roy. 2019. Xcel-RAM: Accelerating Binary Neural Networks in High-Throughput SRAM Compute Arrays. IEEE Transactions on Circuits and Systems I: Regular Papers PP (04 2019) 1–13. https://doi.org/10.1109/TCSI.2019.2907488 A. Agrawal A. Jaiswal D. Roy B. Han G. Srinivasan A. Ankit and K. Roy. 2019. Xcel-RAM: Accelerating Binary Neural Networks in High-Throughput SRAM Compute Arrays. IEEE Transactions on Circuits and Systems I: Regular Papers PP (04 2019) 1–13. https://doi.org/10.1109/TCSI.2019.2907488
2. S. Angizi and D. Fan. 2019. Accelerating Bulk Bit-Wise X(N)OR Operation in Processing-in-DRAM Platform. CoRR abs/1904.05782(2019). arxiv:1904.05782http://arxiv.org/abs/1904.05782 S. Angizi and D. Fan. 2019. Accelerating Bulk Bit-Wise X(N)OR Operation in Processing-in-DRAM Platform. CoRR abs/1904.05782(2019). arxiv:1904.05782http://arxiv.org/abs/1904.05782
3. M. Blott T. B. Preußer N. J. Fraser G. Gambardella K. O’Brien and Y. Umuroglu. 2018. FINN-R: An End-to-End Deep-Learning Framework for Fast Exploration of Quantized Neural Networks. CoRR abs/1809.04570(2018). arxiv:1809.04570http://arxiv.org/abs/1809.04570 M. Blott T. B. Preußer N. J. Fraser G. Gambardella K. O’Brien and Y. Umuroglu. 2018. FINN-R: An End-to-End Deep-Learning Framework for Fast Exploration of Quantized Neural Networks. CoRR abs/1809.04570(2018). arxiv:1809.04570http://arxiv.org/abs/1809.04570
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. HiFi-DRAM: Enabling High-fidelity DRAM Research by Uncovering Sense Amplifiers with IC Imaging;2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA);2024-06-29
2. Fusing In-storage and Near-storage Acceleration of Convolutional Neural Networks;ACM Journal on Emerging Technologies in Computing Systems;2023-11-14
3. An Efficient Accelerator on FPGA for Large Convolution and Correlation using Winograd;2023 8th International Conference on Integrated Circuits and Microsystems (ICICM);2023-10-20
4. HAW: Hardware-Aware Point Selection for Efficient Winograd Convolution;IEEE Signal Processing Letters;2023
5. FeFET versus DRAM based PIM Architectures: A Comparative Study;2022 IFIP/IEEE 30th International Conference on Very Large Scale Integration (VLSI-SoC);2022-10-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3