Affiliation:
1. Université Joseph Fourier
2. Université Montpellier 2 and Université de Perpignan
3. University of Washington
Abstract
In the past two decades, some major efforts have been made to reduce exact (e.g. integer, rational, polynomial) linear algebra problems to matrix multiplication in order to provide algorithms with optimal asymptotic complexity. To provide efficient implementations of such algorithms one need to be careful with the underlying arithmetic. It is well known that modular techniques such as the Chinese remainder algorithm or the
p
-adic lifting allow very good practical performance, especially when word size arithmetic is used. Therefore, finite field arithmetic becomes an important core for efficient exact linear algebra libraries. In this article, we study high performance implementations of basic linear algebra routines over word size prime fields: especially matrix multiplication; our goal being to provide an exact alternate to the numerical BLAS library. We show that this is made possible by a careful combination of numerical computations and asymptotically faster algorithms. Our kernel has several symbolic linear algebra applications enabled by diverse matrix multiplication reductions: symbolic triangularization, system solving, determinant, and matrix inverse implementations are thus studied.
Publisher
Association for Computing Machinery (ACM)
Subject
Applied Mathematics,Software
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献