Dense Linear Algebra over Word-Size Prime Fields

Author:

Dumas Jean-Guillaume1,Giorgi Pascal2,Pernet Clément3

Affiliation:

1. Université Joseph Fourier

2. Université Montpellier 2 and Université de Perpignan

3. University of Washington

Abstract

In the past two decades, some major efforts have been made to reduce exact (e.g. integer, rational, polynomial) linear algebra problems to matrix multiplication in order to provide algorithms with optimal asymptotic complexity. To provide efficient implementations of such algorithms one need to be careful with the underlying arithmetic. It is well known that modular techniques such as the Chinese remainder algorithm or the p -adic lifting allow very good practical performance, especially when word size arithmetic is used. Therefore, finite field arithmetic becomes an important core for efficient exact linear algebra libraries. In this article, we study high performance implementations of basic linear algebra routines over word size prime fields: especially matrix multiplication; our goal being to provide an exact alternate to the numerical BLAS library. We show that this is made possible by a careful combination of numerical computations and asymptotically faster algorithms. Our kernel has several symbolic linear algebra applications enabled by diverse matrix multiplication reductions: symbolic triangularization, system solving, determinant, and matrix inverse implementations are thus studied.

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Reference44 articles.

1. Aho A. V. Hopcroft J. E. and Ullman J. D. 1974. The Design and Analysis of Computer Algorithms. Addison-Wesley. Aho A. V. Hopcroft J. E. and Ullman J. D. 1974. The Design and Analysis of Computer Algorithms . Addison-Wesley.

2. Anderson E. Bai Z. Bischof C. Blackford S. Demmel J. Dongarra J. Du Croz J. Greenbaum A. Hammarling S. McKenney A. and Sorensen D. 1999. LAPACK Users’ Guide Third ed. Society for Industrial and Applied Mathematics Philadelphia PA. Anderson E. Bai Z. Bischof C. Blackford S. Demmel J. Dongarra J. Du Croz J. Greenbaum A. Hammarling S. McKenney A. and Sorensen D. 1999. LAPACK Users’ Guide Third ed. Society for Industrial and Applied Mathematics Philadelphia PA.

3. Bini D. and Pan V. 1994. Polynomial and Matrix Computations Volume 1: Fundamental Algorithms. Birkhauser Boston. Bini D. and Pan V. 1994. Polynomial and Matrix Computations Volume 1: Fundamental Algorithms. Birkhauser Boston.

4. Brassel M. Giorgi P. and Pernet C. 2003. LUdivine: A symbolic block LU factorisation for matrices over finite fields using BLAS. Poster http://ljk.imag.fr/membres/Jean−Guillaume.Dumas/FFLAS/FFLAS_Download/ludivine_poster_eccad2003.ps.gz. Brassel M. Giorgi P. and Pernet C. 2003. LUdivine: A symbolic block LU factorisation for matrices over finite fields using BLAS. Poster http://ljk.imag.fr/membres/Jean−Guillaume.Dumas/FFLAS/FFLAS_Download/ludivine_poster_eccad2003.ps.gz.

5. Triangular factorization and inversion by fast matrix multiplication

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Plaintext-Ciphertext Matrix Multiplication and FHE Bootstrapping: Fast and Fused;Lecture Notes in Computer Science;2024

2. On a Two-Layer Modular Arithmetic;ACM Communications in Computer Algebra;2023-09

3. Modular Matrix Multiplication on GPU for Polynomial System Solving;ACM Communications in Computer Algebra;2023-06

4. Some fast algorithms multiplying a matrix by its adjoint;Journal of Symbolic Computation;2023-03

5. Almost all subgeneric third-order Chow decompositions are identifiable;Annali di Matematica Pura ed Applicata (1923 -);2022-06-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3