Flow-complex-based shape reconstruction from 3D curves

Author:

Sadri Bardia1,Singh Karan1

Affiliation:

1. University of Toronto, Canada

Abstract

We address the problem of shape reconstruction from a sparse unorganized collection of 3D curves, typically generated by increasingly popular 3D curve sketching applications. Experimentally, we observe that human understanding of shape from connected 3D curves is largely consistent, and informed by both topological connectivity and geometry of the curves. We thus employ the flow complex , a structure that captures aspects of input topology and geometry, in a novel algorithm to produce an intersection-free 3D triangulated shape that interpolates the input 3D curves. Our approach is able to triangulate highly nonplanar and concave curve cycles, providing a robust 3D mesh and parametric embedding for challenging 3D curve input. Our evaluation is fourfold: we show our algorithm to match designer-selected curve cycles for surfacing; we produce user-acceptable shapes for a wide range of curve inputs; we show our approach to be predictable and robust to curve addition and deletion; we compare our results to prior art.

Funder

Mitacs

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PARAMETRIC MODELING OF BIO-INSPIRED LUMINAIRES FOR ADDITIVE MANUFACTURING TECHNOLOGIES;DYNA;2024-01-01

2. Character Modelling with Sketches and ODE-Based Shape Creation;Numerical Mathematics: Theory, Methods and Applications;2023-06

3. Piecewise-smooth surface fitting onto unstructured 3D sketches;ACM Transactions on Graphics;2022-07

4. Detecting viewer-perceived intended vector sketch connectivity;ACM Transactions on Graphics;2022-07

5. CASSIE: Curve and Surface Sketching in Immersive Environments;Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems;2021-05-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3