Design-driven quadrangulation of closed 3D curves

Author:

Bessmeltsev Mikhail1,Wang Caoyu1,Sheffer Alla1,Singh Karan2

Affiliation:

1. University of British Columbia

2. University of Toronto

Abstract

We propose a novel, design-driven, approach to quadrangulation of closed 3D curves created by sketch-based or other curve modeling systems. Unlike the multitude of approaches for quad-remeshing of existing surfaces, we rely solely on the input curves to both conceive and construct the quad-mesh of an artist imagined surface bounded by them. We observe that viewers complete the intended shape by envisioning a dense network of smooth, gradually changing, flow-lines that interpolates the input curves. Components of the network bridge pairs of input curve segments with similar orientation and shape. Our algorithm mimics this behavior. It first segments the input closed curves into pairs of matching segments, defining dominant flow line sequences across the surface. It then interpolates the input curves by a network of quadrilateral cycles whose iso-lines define the desired flow line network. We proceed to interpolate these networks with all-quad meshes that convey designer intent. We evaluate our results by showing convincing quadrangulations of complex and diverse curve networks with concave, non-planar cycles, and validate our approach by comparing our results to artist generated interpolating meshes.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Piecewise-smooth surface fitting onto unstructured 3D sketches;ACM Transactions on Graphics;2022-07

2. CASSIE: Curve and Surface Sketching in Immersive Environments;Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems;2021-05-06

3. Extracting Cycle-aware Feature Curve Networks from 3D Models;Computer-Aided Design;2021-02

4. QuadMixer;ACM Transactions on Graphics;2019-12-31

5. Variational implicit point set surfaces;ACM Transactions on Graphics;2019-08-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3