Dynamic Malware Analysis in the Modern Era—A State of the Art Survey

Author:

Or-Meir Ori1,Nissim Nir1ORCID,Elovici Yuval1,Rokach Lior1

Affiliation:

1. Ben-Gurion University of the Negev, Beer-Sheva, Israel

Abstract

Although malicious software (malware) has been around since the early days of computers, the sophistication and innovation of malware has increased over the years. In particular, the latest crop of ransomware has drawn attention to the dangers of malicious software, which can cause harm to private users as well as corporations, public services (hospitals and transportation systems), governments, and security institutions. To protect these institutions and the public from malware attacks, malicious activity must be detected as early as possible, preferably before it conducts its harmful acts. However, it is not always easy to know what to look for—especially when dealing with new and unknown malware that has never been seen. Analyzing a suspicious file by static or dynamic analysis methods can provide relevant and valuable information regarding a file's impact on the hosting system and help determine whether the file is malicious or not, based on the method's predefined rules. While various techniques (e.g., code obfuscation, dynamic code loading, encryption, and packing) can be used by malware writers to evade static analysis (including signature-based anti-virus tools), dynamic analysis is robust to these techniques and can provide greater understanding regarding the analyzed file and consequently can lead to better detection capabilities. Although dynamic analysis is more robust than static analysis, existing dynamic analysis tools and techniques are imperfect, and there is no single tool that can cover all aspects of malware behavior. The most recent comprehensive survey performed in this area was published in 2012. Since that time, the computing environment has changed dramatically with new types of malware (ransomware, cryptominers), new analysis methods (volatile memory forensics, side-channel analysis), new computing environments (cloud computing, IoT devices), new machine-learning algorithms, and more. The goal of this survey is to provide a comprehensive and up-to-date overview of existing methods used to dynamically analyze malware, which includes a description of each method, its strengths and weaknesses, and its resilience against malware evasion techniques. In addition, we include an overview of prominent studies presenting the usage of machine-learning methods to enhance dynamic malware analysis capabilities aimed at detection, classification, and categorization.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference103 articles.

1. The concept of dynamic analysis

2. Basic survey on malware analysis, tools and techniques;Uppal D.;Int. J. Comput. Sci. Appl.,2014

3. A survey of malware detection techniques;Idika N.;Purdue University,2007

4. Malware Analysis and Classification: A Survey

5. A survey on techniques in detection and analyzing malware executables;Mathur K.;Int. J. Adv. Res. Comput. Sci. Softw. Eng.,2013

Cited by 189 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3