Formally Verified Next-generation Airborne Collision Avoidance Games in ACAS X

Author:

Cleaveland Rachel1ORCID,Mitsch Stefan1ORCID,Platzer André1ORCID

Affiliation:

1. Carnegie Mellon University, Pittsburgh, PA, USA

Abstract

The design of aircraft collision avoidance algorithms is a subtle but important challenge that merits the need for provable safety guarantees. Obtaining such guarantees is nontrivial given the unpredictability of the interplay of the intruder aircraft decisions, the ownship pilot reactions, and the subtlety of the continuous motion dynamics of aircraft. Existing collision avoidance systems, such as TCAS and the Next-Generation Airborne Collision Avoidance System ACAS X, have been analyzed assuming severe restrictions on the intruder’s flight maneuvers, limiting their safety guarantees in real-world scenarios where the intruder may change its course. This work takes a conceptually significant and practically relevant departure from existing ACAS X models by generalizing them to hybrid games with first-class representations of the ownship and intruder decisions coming from two independent players, enabling significantly advanced predictive power. By proving the existence of winning strategies for the resulting Adversarial ACAS X in differential game logic, collision-freedom is established for the rich encounters of ownship and intruder aircraft with independent decisions along differential equations for flight paths with evolving vertical/horizontal velocities. We present three classes of models of increasing complexity: single-advisory infinite-time models, bounded time models, and infinite time, multi-advisory models. Within each class of models, we identify symbolic conditions and prove that there then always is a possible ownship maneuver that will prevent a collision between the two aircraft.

Funder

AFOSR

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid dynamical systems logic and its refinements;Science of Computer Programming;2025-01

2. Dynamic Obstacle Avoidance with Guarantees for Small Fixed-Wing Aircraft;2024 IEEE Conference on Control Technology and Applications (CCTA);2024-08-21

3. Embedding Differential Dynamic Logic in PVS;Electronic Proceedings in Theoretical Computer Science;2024-04-23

4. A Temporal Differential Dynamic Logic Formal Embedding;Proceedings of the 13th ACM SIGPLAN International Conference on Certified Programs and Proofs;2024-01-09

5. Towards a Methodology to Design Provably Secure Cyber-physical Systems;ACM SIGAda Ada Letters;2023-10-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3