Coloring 3-Colorable Graphs with Less than n 1/5 Colors

Author:

Kawarabayashi Ken-Ichi1,Thorup Mikkel2

Affiliation:

1. National Institute of Informatics, Tokyo, Japan

2. University of Copenhagen, Copenhagen, Denmark

Abstract

We consider the problem of coloring a 3-colorable graph in polynomial time using as few colors as possible. We first present a new combinatorial algorithm using Õ ( n 4/11 ) colors. This is the first combinatorial improvement since Blum’s Õ ( n 3/8 ) bound from FOCS’90. Like Blum’s algorithm, our new algorithm composes immediately with recent semi-definite programming approaches, and improves the best bound for the polynomial time algorithm for the coloring of 3-colorable graphs from O ( n 0.2072 ) colors by Chlamtac from FOCS’07 to O ( n 0.2049 ) colors. Next, we develop a new recursion tailored for combination with semi-definite approaches, bringing us further down to O ( n 0.19996 ) colors.

Funder

Advanced Grant from the Danish Council for Independent Research under the Sapere Aude research carrier programme

JST ERATO Kawarabayashi Large Graph Project

AT8T Labs--Research

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semidefinite Programming and Linear Equations vs. Homomorphism Problems;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10

2. Better Coloring of 3-Colorable Graphs;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10

3. Robust Factorizations and Colorings of Tensor Graphs;SIAM Journal on Discrete Mathematics;2024-02-28

4. Improved NP-Hardness of Approximation for Orthogonality Dimension and Minrank;SIAM Journal on Discrete Mathematics;2023-11-14

5. Graph Colouring Is Hard on Average for Polynomial Calculus and Nullstellensatz;2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS);2023-11-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3