Efficient query processing on graph databases

Author:

Cheng James1,Ke Yiping2,Ng Wilfred3

Affiliation:

1. Nanyang Technological University, Singapore

2. The Chinese University of Hong Kong, New Territories, Hong Kong

3. The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

Abstract

We study the problem of processing subgraph queries on a database that consists of a set of graphs. The answer to a subgraph query is the set of graphs in the database that are supergraphs of the query. In this article, we propose an efficient index, FG*-index , to solve this problem. The cost of processing a subgraph query using most existing indexes mainly consists of two parts: the index probing cost and the candidate verification cost. Index probing is to find the query in the index, or to find the graphs from which we can generate a candidate answer set for the query. Candidate verification is to test whether each graph in the candidate set is indeed a supergraph of the query. We design FG*-index to minimize these two costs as follows. FG*-index consists of three components: the FG-index , the feature-index , and the FAQ-index . First, the FG-index employs the concept of Frequent subGraph ( FG ) to allow the set of queries that are FGs to be answered without candidate verification. We call this set of queries FG-queries . We can enlarge the set of FG-queries so that more queries can be answered without candidate verification; however, a larger set of FG-queries implies a larger FG-index and hence the index probing cost also increases. We propose the feature-index to reduce the index probing cost. The feature-index uses features to filter false results that are matched in the FG-index, so that we can quickly find the truly matching graphs for a query. For processing non-FG-queries, we propose the FAQ-index, which is dynamically constructed from the set of Frequently Asked non-FG-Queries ( FAQs ). Using the FAQ-index, verification is not required for processing FAQs and only a small number of candidates need to be verified for processing non-FG-queries that are not frequently asked . Finally, a comprehensive set of experiments verifies that query processing using FG*-index is up to orders of magnitude more efficient than state-of-the-art indexes and it is also more scalable.

Funder

Research Grants Council, University Grants Committee, Hong Kong

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3