P-MMF: Provider Max-min Fairness Re-ranking in Recommender System

Author:

Xu Chen1ORCID,Chen Sirui2ORCID,Xu Jun1ORCID,Shen Weiran1ORCID,Zhang Xiao1ORCID,Wang Gang3ORCID,Dong Zhenhua3ORCID

Affiliation:

1. Gaoling School of Artificial Intelligence, Renmin University of China, China

2. School of Information, Renmin University of China, China

3. Huawei Noah's ark lab, Huawei Technologies, China

Funder

National Natural Science Foundation of China

Outstanding Innovative Talents Cultivation Funded Programs 2023 of Renmin University of China

Intelligent Social Governance Interdisciplinary Platform, Major Innovation \& Planning Interdisciplinary Platform for the ``Double-First Class' Initiative

National Key R\&D Program of China

Publisher

ACM

Reference52 articles.

1. Multistakeholder recommendation: Survey and research directions

2. Himan Abdollahpouri and Robin Burke . 2019. Multi-stakeholder recommendation and its connection to multi-sided fairness. arXiv preprint arXiv:1907.13158 ( 2019 ). Himan Abdollahpouri and Robin Burke. 2019. Multi-stakeholder recommendation and its connection to multi-sided fairness. arXiv preprint arXiv:1907.13158 (2019).

3. Himan Abdollahpouri , Masoud Mansoury , Robin Burke , and Bamshad Mobasher . 2019. The unfairness of popularity bias in recommendation. arXiv preprint arXiv:1907.13286 ( 2019 ). Himan Abdollahpouri, Masoud Mansoury, Robin Burke, and Bamshad Mobasher. 2019. The unfairness of popularity bias in recommendation. arXiv preprint arXiv:1907.13286 (2019).

4. Akshay Agrawal , Brandon Amos , Shane Barratt , Stephen Boyd , Steven Diamond , and J Zico Kolter . 2019. Differentiable convex optimization layers. Advances in neural information processing systems 32 ( 2019 ). Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J Zico Kolter. 2019. Differentiable convex optimization layers. Advances in neural information processing systems 32 (2019).

5. Santiago Balseiro , Haihao Lu , and Vahab Mirrokni . 2021 . Regularized online allocation problems: Fairness and beyond . In International Conference on Machine Learning. PMLR, 630–639 . Santiago Balseiro, Haihao Lu, and Vahab Mirrokni. 2021. Regularized online allocation problems: Fairness and beyond. In International Conference on Machine Learning. PMLR, 630–639.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LTP-MMF: Towards Long-term Provider Max-min Fairness Under Recommendation Feedback Loops;ACM Transactions on Information Systems;2024-09-13

2. Bias and Unfairness in Information Retrieval Systems: New Challenges in the LLM Era;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

3. Utility-Oriented Reranking with Counterfactual Context;ACM Transactions on Knowledge Discovery from Data;2024-07-31

4. Can We Trust Recommender System Fairness Evaluation? The Role of Fairness and Relevance;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

5. A Taxation Perspective for Fair Re-ranking;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3