Utility-Oriented Reranking with Counterfactual Context

Author:

Xi Yunjia1ORCID,Liu Weiwen2ORCID,Dai Xinyi1ORCID,Tang Ruiming2ORCID,Liu Qing2ORCID,Zhang Weinan1ORCID,Yu Yong1ORCID

Affiliation:

1. Shanghai Jiao Tong University, Shanghai, China

2. Noah’s Ark Lab, Huawei, China

Abstract

As a critical task for large-scale commercial recommender systems, reranking rearranges items in the initial ranking lists from the previous ranking stage to better meet users’ demands. Foundational work in reranking has shown the potential of improving recommendation results by uncovering mutual influence among items. However, rather than considering the context of initial lists as most existing methods do, an ideal reranking algorithm should consider the counterfactual context— the position and the alignment of the items in the reranked lists . In this work, we propose a novel pairwise reranking framework, Utility-oriented Reranking with Counterfactual Context (URCC), which maximizes the overall utility after reranking efficiently. Specifically, we first design a utility-oriented evaluator, which applies Bi-LSTM and graph attention mechanism to estimate the listwise utility via the counterfactual context modeling. Then, under the guidance of the evaluator, we propose a pairwise reranker model to find the most suitable position for each item by swapping misplaced item pairs. Extensive experiments on two benchmark datasets and a proprietary real-world dataset demonstrate that URCC significantly outperforms the state-of-the-art models in terms of both relevance-based metrics and utility-based metrics.

Funder

National Natural Science Foundation of China

Huawei Innovation Research Program

Wu Wen Jun Honorary Doctoral Scholarship

Publisher

Association for Computing Machinery (ACM)

Reference72 articles.

1. 2020. MindSpore. Retrieved from https://www.mindspore.cn/

2. Learning a Deep Listwise Context Model for Ranking Refinement

3. Davide Baldelli, Junfeng Jiang, Akiko Aizawa, and Paolo Torroni. 2024. TWOLAR: A TWO-Step LLM-Augmented Distillation Method for Passage Reranking. In European Conference on Information Retrieval, Nazli Goharian, Nicola Tonellotto, Yulan He, Aldo Lipani, Graham McDonald, Craig Macdonald, and Iadh Ounis (Eds.), Springer Nature Switzerland, Cham, 470–485.

4. Irwan Bello Sayali Kulkarni Sagar Jain Craig Boutilier Ed Chi Elad Eban Xiyang Luo Alan Mackey and Ofer Meshi. 2018. Seq2Slate: Re-Ranking and Slate Optimization with RNNs. arXiv:1810.02019. Retrieved from https://doi.org/10.48550/arXiv.1810.02019

5. Christopher Burges, Robert Ragno, and Quoc Le. 2007. Learning to Rank with Nonsmooth Cost Functions. In Advances in Neural Information Processing Systems, B. Scholkopf and J. Platt and T. Hoffman (Eds.), 19, MIT Press, 193–200.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3