Efficient Data Supply for Parallel Heterogeneous Architectures

Author:

Ham Tae Jun1ORCID,Aragón Juan L.2,Martonosi Margaret3

Affiliation:

1. Seoul National University, Seoul, Republic of Korea

2. University of Murcia, Murcia, SPAIN

3. Princeton University, NJ

Abstract

Decoupling techniques have been proposed to reduce the amount of memory latency exposed to high-performance accelerators as they fetch data. Although decoupled access-execute (DAE) and more recent decoupled data supply approaches offer promising single-threaded performance improvements, little work has considered how to extend them into parallel scenarios. This article explores the opportunities and challenges of designing parallel, high-performance, resource-efficient decoupled data supply systems. We propose M ercury , a parallel decoupled data supply system that utilizes thread-level parallelism for high-throughput data supply with good portability attributes. Additionally, we introduce some microarchitectural improvements for data supply units to efficiently handle long-latency indirect loads.

Funder

Spanish State Research Agency

Center for Future Architecture Research

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cohort: Software-Oriented Acceleration for Heterogeneous SoCs;Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3;2023-03-25

2. An architecture interface and offload model for low-overhead, near-data, distributed accelerators;2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO);2022-10

3. Tiny but mighty;Proceedings of the 49th Annual International Symposium on Computer Architecture;2022-06-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3