1. Martín Abadi , Ashish Agarwal , Paul Barham , Eugene Brevdo , Zhifeng Chen , Craig Citro , Greg S. Corrado , Andy Davis , Jeffrey Dean , Matthieu Devin , Sanjay Ghemawat , Ian Goodfellow , Andrew Harp , Geoffrey Irving , Michael Isard , Yangqing Jia , Rafal Jozefowicz , Lukasz Kaiser , Manjunath Kudlur , Josh Levenberg , Dandelion Mané , Rajat Monga , Sherry Moore , Derek Murray , Chris Olah , Mike Schuster , Jonathon Shlens , Benoit Steiner , Ilya Sutskever , Kunal Talwar , Paul Tucker , Vincent Vanhoucke , Vijay Vasudevan , Fernanda Viégas , Oriol Vinyals , Pete Warden , Martin Wattenberg , Martin Wicke , Yuan Yu , and Xiaoqiang Zheng . 2016. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. arXiv ( 2016 ). Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. arXiv (2016).
2. Shahin Amiriparian , Michael Freitag , Nicholas Cummins , and Björn Schuller . 2017 a. Sequence to Sequence Autoencoders for Unsupervised Representation Learning from Audio . In Proc. DCASE 2017. Munich, Germany, 17--21. Shahin Amiriparian, Michael Freitag, Nicholas Cummins, and Björn Schuller. 2017a. Sequence to Sequence Autoencoders for Unsupervised Representation Learning from Audio. In Proc. DCASE 2017. Munich, Germany, 17--21.
3. Snore Sound Classification Using Image-Based Deep Spectrum Features
4. Bag-of-Deep-Features: Noise-Robust Deep Feature Representations for Audio Analysis
5. Towards cross-modal pre-training and learning tempo-spatial characteristics for audio recognition with convolutional and recurrent neural networks