Respiratory Diseases Diagnosis Using Audio Analysis and Artificial Intelligence: A Systematic Review

Author:

Kapetanidis Panagiotis1,Kalioras Fotios1,Tsakonas Constantinos1ORCID,Tzamalis Pantelis1ORCID,Kontogiannis George1,Karamanidou Theodora2ORCID,Stavropoulos Thanos G.2ORCID,Nikoletseas Sotiris1ORCID

Affiliation:

1. Computer Engineering and Informatics Department, University of Patras, 26504 Patras, Greece

2. Pfizer Center for Digital Innovation, 55535 Thessaloniki, Greece

Abstract

Respiratory diseases represent a significant global burden, necessitating efficient diagnostic methods for timely intervention. Digital biomarkers based on audio, acoustics, and sound from the upper and lower respiratory system, as well as the voice, have emerged as valuable indicators of respiratory functionality. Recent advancements in machine learning (ML) algorithms offer promising avenues for the identification and diagnosis of respiratory diseases through the analysis and processing of such audio-based biomarkers. An ever-increasing number of studies employ ML techniques to extract meaningful information from audio biomarkers. Beyond disease identification, these studies explore diverse aspects such as the recognition of cough sounds amidst environmental noise, the analysis of respiratory sounds to detect respiratory symptoms like wheezes and crackles, as well as the analysis of the voice/speech for the evaluation of human voice abnormalities. To provide a more in-depth analysis, this review examines 75 relevant audio analysis studies across three distinct areas of concern based on respiratory diseases’ symptoms: (a) cough detection, (b) lower respiratory symptoms identification, and (c) diagnostics from the voice and speech. Furthermore, publicly available datasets commonly utilized in this domain are presented. It is observed that research trends are influenced by the pandemic, with a surge in studies on COVID-19 diagnosis, mobile data acquisition, and remote diagnosis systems.

Funder

Pfizer Hellas SA

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3