Adaptive Process Migrations in Coupled Applications for Exchanging Data in Local File Cache

Author:

Liao Jianwei1ORCID,Cai Zhigang1,Trahay Francois2,Zhou Jun1,Xiao Guoqiang1

Affiliation:

1. Southwest University, China

2. Telecom SudParis, France

Abstract

Many problems in science and engineering are usually emulated as a set of mutually interacting models, resulting in a coupled or multiphysics application. These component models show challenges originating from their interdisciplinary nature and from their computational and algorithmic complexities. In general, these models are independently developed and maintained, so that they commonly employ the global file system for exchanging their data in the coupled application. To effectively use the local file cache on the compute node for exchanging the data among the processes of such applications, and consequently boosting I/O performance, this article presents a novel mechanism to migrate a process from one compute node to another node on the basis of block I/O dependency. In this newly proposed mechanism, the block I/O dependency between two involved processes running on the different nodes is profiled as block access similarity by taking advantage of the Cohen’s kappa statistic . Then, the process is supposed to be dynamically migrated from its source node to the destination node, on which there is another process having heavy block I/O dependency. As a result, both processes can exchange their data by utilizing the local file cache instead of the global file system to reduce I/O time. The experimental results demonstrate that the I/O performance can be significantly improved, and the time required for executing the application can be resultantly decreased, as expected.

Funder

the Fundamental Research Funds for the Central Universities

Hunan Provincial Natural Science Foundation of China

the Opening Project of State Key Laboratory for Novel Software Technology

Publisher

Association for Computing Machinery (ACM)

Subject

Software,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Toward Efficient Block Replication Management in Distributed Storage;ACM Transactions on Modeling and Performance Evaluation of Computing Systems;2020-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3