Toward Efficient Block Replication Management in Distributed Storage

Author:

Liao Jianwei1ORCID,Sha Zhibing1,Cai Zhigang1,Liu Zhiming1,Li Kenli2,Liao Wei-Keng3,Choudhary Alok N.3,Ishiakwa Yutaka4

Affiliation:

1. Southwest University, Beibei, Chongqing, China

2. Hunan University, Changsha, Hunan, China

3. Northwestern University, Chicago, USA

4. RIKEN, Chuo, Kobe, Hyogo, Japan

Abstract

Distributed/parallel file systems commonly suffer from load imbalance and resource contention due to the bursty characteristic exhibited in scientific applications. This article presents an adaptive scheme supporting dynamic block data replication and an efficient replica placement policy to improve the I/O performance of a distributed file system. Our goal is not only to yield a balanced data replication among storage servers but also a high degree of data access parallelism for the applications. We first present mathematical cost models to formulate the cost of data block replication by considering both the overhead and reduced data access time to the replicated data. To verify the validity and feasibility of the proposed cost model, we implement our proposal in a prototype distributed file system and evaluate it using a set of representative database-relevant application benchmarks. Our results demonstrate that the proposed approach can boost the usage efficiency of the data replicas with acceptable overhead of data replication management. Consequently, the overall data throughput of storage system can be noticeably improved. In summary, the proposed replication management scheme works well, especially for the database-relevant applications that exhibit an uneven access frequency and pattern to different parts of files.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Natural Science Foundation Project of CQ CSTC

Hunan Provincial Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Safety, Risk, Reliability and Quality,Media Technology,Information Systems,Software,Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3