ECROs: building global scale systems from sequential code

Author:

De Porre Kevin1ORCID,Ferreira Carla2ORCID,Preguiça Nuno2ORCID,Gonzalez Boix Elisa1ORCID

Affiliation:

1. Vrije Universiteit Brussel, Belgium

2. NOVA School of Science and Technology, Portugal

Abstract

To ease the development of geo-distributed applications, replicated data types (RDTs) offer a familiar programming interface while ensuring state convergence, low latency, and high availability. However, RDTs are still designed exclusively by experts using ad-hoc solutions that are error-prone and result in brittle systems. Recent works statically detect conflicting operations on existing data types and coordinate those at runtime to guarantee convergence and preserve application invariants. However, these approaches are too conservative, imposing coordination on a large number of operations. In this work, we propose a principled approach to design and implement efficient RDTs taking into account application invariants. Developers extend sequential data types with a distributed specification, which together form an RDT. We statically analyze the specification to detect conflicts and unravel their cause. This information is then used at runtime to serialize concurrent operations safely and efficiently. Our approach derives a correct RDT from any sequential data type without changes to the data type's implementation and with minimal coordination. We implement our approach in Scala and develop an extensive portfolio of RDTs. The evaluation shows that our approach provides performance similar to conflict-free replicated data types for commutative operations, and considerably improves the performance of non-commutative operations, compared to existing solutions.

Funder

Fundação para a Ciência e a Tecnologia

Fonds Wetenschappelijk Onderzoek

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LoRe: A Programming Model for Verifiably Safe Local-first Software;ACM Transactions on Programming Languages and Systems;2024-01-15

2. General-Purpose Secure Conflict-free Replicated Data Types;2023 IEEE 36th Computer Security Foundations Symposium (CSF);2023-07

3. Programming Support for Local-First Software: Enabling the Design of Privacy-Preserving Distributed Software without Relying on the Cloud;Companion Proceedings of the 2022 ACM SIGPLAN International Conference on Systems, Programming, Languages, and Applications: Software for Humanity;2022-11-29

4. LoRe: Local-First Reactive Programming with Verified Safety Guarantees;Companion Proceedings of the 2022 ACM SIGPLAN International Conference on Systems, Programming, Languages, and Applications: Software for Humanity;2022-11-29

5. Katara: synthesizing CRDTs with verified lifting;Proceedings of the ACM on Programming Languages;2022-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3