Coordination avoidance in database systems

Author:

Bailis Peter1,Fekete Alan2,Franklin Michael J.1,Ghodsi Ali1,Hellerstein Joseph M.1,Stoica Ion1

Affiliation:

1. UC Berkeley

2. University of Sydney

Abstract

Minimizing coordination, or blocking communication between concurrently executing operations, is key to maximizing scalability, availability, and high performance in database systems. However, uninhibited coordination-free execution can compromise application correctness, or consistency. When is coordination necessary for correctness? The classic use of serializable transactions is sufficient to maintain correctness but is not necessary for all applications, sacrificing potential scalability. In this paper, we develop a formal framework, invariant confluence, that determines whether an application requires coordination for correct execution. By operating on application-level invariants over database states (e.g., integrity constraints), invariant confluence analysis provides a necessary and sufficient condition for safe, coordination-free execution. When programmers specify their application invariants, this analysis allows databases to coordinate only when anomalies that might violate invariants are possible. We analyze the invariant confluence of common invariants and operations from real-world database systems (i.e., integrity constraints) and applications and show that many are invariant confluent and therefore achievable without coordination. We apply these results to a proof-of-concept coordination-avoiding database prototype and demonstrate sizable performance gains compared to serializable execution, notably a 25-fold improvement over prior TPC-C New-Order performance on a 200 server cluster.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DistMind: Efficient Resource Disaggregation for Deep Learning Workloads;IEEE/ACM Transactions on Networking;2024-06

2. Noctua: Towards Automated and Practical Fine-grained Consistency Analysis;Proceedings of the Nineteenth European Conference on Computer Systems;2024-04-22

3. Logical Clocks and Monotonicity for Byzantine-Tolerant Replicated Data Types;Proceedings of the 11th Workshop on Principles and Practice of Consistency for Distributed Data;2024-04-22

4. LoRe: A Programming Model for Verifiably Safe Local-first Software;ACM Transactions on Programming Languages and Systems;2024-01-15

5. Synql: A CRDT-Based Approach for Replicated Relational Databases with Integrity Constraints;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3