Finding Near-optimal Configurations in Colossal Spaces with Statistical Guarantees

Author:

Oh Jeho1ORCID,Batory Don1ORCID,Heradio Rubén2ORCID

Affiliation:

1. The University of Texas at Austin, United States

2. Universidad Nacional de Educación a Distancia, Spain

Abstract

A Software Product Line ( SPL ) is a family of similar programs. Each program is defined by a unique set of features, called a configuration , that satisfies all feature constraints. “What configuration achieves the best performance for a given workload?” is the SPL Optimization ( SPLO ) challenge. SPLO is daunting: just 80 unconstrained features yield 10 24 unique configurations, which equals the estimated number of stars in the universe. We explain (a) how uniform random sampling and random search algorithms solve SPLO more efficiently and accurately than current machine-learned performance models and (b) how to compute statistical guarantees on the quality of a returned configuration; i.e., it is within x% of optimal with y% confidence.

Funder

NSF

Universidad Nacional de Educacion a Distancia

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Reference131 articles.

1. 2021. Learning software configuration spaces: A systematic literature review. JSS 182 (2021).

2. 7z. 2021. 7z Website. https://www.7-zip.org/download.html

3. M. Acher et al. 2019. Learning Very Large Configuration Spaces: What Matters for Linux Kernel Sizes. Technical Report hal-02314830. Inria Rennes.

4. M. Acher et al. 2022. Feature subset selection for learning huge configuration spaces: The case of Linux kernel size. In SPLC.

5. D. Achlioptas, Z. S. Hammoudeh, and P. Theodoropoulos. 2018. Fast sampling of perfectly uniform satisfying assignments. In SAT.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization Space Learning: A Lightweight, Noniterative Technique for Compiler Autotuning;28th ACM International Systems and Software Product Line Conference;2024-09-02

2. Pragmatic Random Sampling of the Linux Kernel: Enhancing the Randomness and Correctness of the conf Tool;28th ACM International Systems and Software Product Line Conference;2024-09-02

3. Embracing Deep Variability For Reproducibility and Replicability;Proceedings of the 2nd ACM Conference on Reproducibility and Replicability;2024-06-18

4. Finding Near-optimal Configurations in Colossal Spaces with Statistical Guarantees;ACM Transactions on Software Engineering and Methodology;2023-11-23

5. Transforming Numerical Feature Models into Propositional Formulas and the Universal Variability Language;Journal of Systems and Software;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3