Visual Analytics of Heterogeneous Data Using Hypergraph Learning

Author:

Xie Cong1ORCID,Zhong Wen1,Xu Wei2,Mueller Klaus1

Affiliation:

1. Stony Brook University, NY

2. Brookhaven National Laboratory, Upton, NY

Abstract

For real-world learning tasks (e.g., classification), graph-based models are commonly used to fuse the information distributed in diverse data sources, which can be heterogeneous, redundant, and incomplete. These models represent the relations in different datasets as pairwise links. However, these links cannot deal with high-order relations which connect multiple objects (e.g., in public health datasets, more than two patient groups admitted by the same hospital in 2014). In this article, we propose a visual analytics approach for the classification on heterogeneous datasets using the hypergraph model. The hypergraph is an extension to traditional graphs in which a hyperedge connects multiple vertices instead of just two. We model various high-order relations in heterogeneous datasets as hyperedges and fuse different datasets with a unified hypergraph structure. We use the hypergraph learning algorithm for predicting missing labels in the datasets. To allow users to inject their domain knowledge into the model-learning process, we augment the traditional learning algorithm in a number of ways. In addition, we also propose a set of visualizations which enable the user to construct the hypergraph structure and the parameters of the learning model interactively during the analysis. We demonstrate the capability of our approach via two real-world cases.

Funder

Brookhaven National Laboratory

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3