Predictive Modeling for Student Grade Prediction Using Machine Learning and Visual Analytics

Author:

Abdul Bujang Siti Dianah1,Selamat Ali123,Krejcar Ondrej3

Affiliation:

1. Malaysia Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, Malaysia

2. School of Computing, Faculty of Engineering, UTM & Media and Games Center of Excellence (MagicX), Universiti Teknologi Malaysia, Johor Bahru, Malaysia

3. Faculty of Informatics and Management, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic

Abstract

Data-driven plays an important role in determining the quality of services in institutions of higher learning (HEIs). Increasingly data in education is encouraging institutions to find ways to improve student academic performance. By using machine learning with visual analytics, data can be predicted based on valuable information and presented with interactive visualizations for institutions to improve decision making. Therefore, predicting students’ academic performance is critical to identifying students at risk of failing a course. In this paper, we propose two approaches, such as (i) a prediction model for predicting students’ final grade based on machine learning that interacts with computational models; (ii) visual analytics to visualize predictive models and insightful data for educators. The data were tested using student achievement records collected from one of the Malaysian Polytechnic databases. The data set used in this study involved 489 first semester students in Computer System Architecture (CSA) course from 2016 to 2019. The decision tree algorithms (J48), Random Tree (RT), Random Forest (RF), and REPTree) was used on the student data set to produce the best predictions of the model. Experimental results show that J48 returns the highest accuracy with 99.8 %, among other algorithms. The findings of this study can help educators predict student success or failure for a particular course at the end of the semester and help educators make informed decisions to improve student academic performance at Polytechnic Malaysia.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3