DenseNet-201-Based Deep Neural Network with Composite Learning Factor and Precomputation for Multiple Sclerosis Classification

Author:

Wang Shui-Hua1,Zhang Yu-Dong2

Affiliation:

1. School of Architecture Building and Civil Engineering, Loughborough University, Loughborough, UK

2. Department of Informatics, University of Leicester, Leicester, Leicestershire, UK

Abstract

( Aim ) Multiple sclerosis is a neurological condition that may cause neurologic disability. Convolutional neural network can achieve good results, but tuning hyperparameters of CNN needs expert knowledge and are difficult and time-consuming. To identify multiple sclerosis more accurately, this article proposed a new transfer-learning-based approach. ( Method ) DenseNet-121, DenseNet-169, and DenseNet-201 neural networks were compared. In addition, we proposed the use of a composite learning factor (CLF) that assigns different learning factor to three types of layers: early frozen layers, middle layers, and late replaced layers. How to allocate layers into those three layers remains a problem. Hence, four transfer learning settings (viz., Settings A, B, C, and D) were tested and compared. A precomputation method was utilized to reduce the storage burden and accelerate the program. ( Results ) We observed that DenseNet-201-D (the layers from CP to T3 are frozen, the layers of D4 are updated with learning factor of 1, and the final new layers of FCL are randomly initialized with learning factor of 10) can achieve the best performance. The sensitivity, specificity, and accuracy of DenseNet-201-D was 98.27± 0.58, 98.35± 0.69, and 98.31± 0.53, respectively. ( Conclusion ) Our method gives better performances than state-of-the-art approaches. Furthermore, this composite learning rate gives superior results to traditional simple learning factor (SLF) strategy.

Funder

Natural Science Foundation of Zhejiang Province

Guangxi Key Laboratory of Trusted Software

Henan Key Research and Development Project

National Key Research and Development Plan

Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3