Explainable artificial intelligence for medical imaging: Review and experiments with infrared breast images

Author:

Raghavan Kaushik1ORCID,Balasubramanian Sivaselvan1,Veezhinathan Kamakoti2

Affiliation:

1. Computer Science and Engineering Indian Institute of Information Technology, Design and Manufacturing ‐ Kancheepuram Chennai Tamil Nadu India

2. Computer Science and Engineering IIT Madras Chennai Tamil Nadu India

Abstract

AbstractThere is a growing trend of using artificial intelligence, particularly deep learning algorithms, in medical diagnostics, revolutionizing healthcare by improving efficiency, accuracy, and patient outcomes. However, the use of artificial intelligence in medical diagnostics comes with the critical need to explain the reasoning behind artificial intelligence‐based predictions and ensure transparency in decision‐making. Explainable artificial intelligence has emerged as a crucial research area to address the need for transparency and interpretability in medical diagnostics. Explainable artificial intelligence techniques aim to provide insights into the decision‐making process of artificial intelligence systems, enabling clinicians to understand the factors the algorithms consider in reaching their predictions. This paper presents a detailed review of saliency‐based (visual) methods, such as class activation methods, which have gained popularity in medical imaging as they provide visual explanations by highlighting the regions of an image most influential in the artificial intelligence's decision. We also present the literature on non‐visual methods, but the focus will be on visual methods. We also use the existing literature to experiment with infrared breast images for detecting breast cancer. Towards the end of this paper, we also propose an “attention guided Grad‐CAM” that enhances the visualizations for explainable artificial intelligence. The existing literature shows that explainable artificial intelligence techniques are not explored in the context of infrared medical images and opens up a wide range of opportunities for further research to make clinical thermography into assistive technology for the medical community.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3