Affiliation:
1. University of Maryland, Columbia University, and IBM T.J. Watson Research Center, Bellevue, WA
Abstract
Paraphrase generation has been shown useful for various natural language processing tasks, including statistical machine translation. A commonly used method for paraphrase generation is pivoting [Callison-Burch et al. 2006], which benefits from linguistic knowledge implicit in the sentence alignment of parallel texts, but has limited applicability due to its reliance on parallel texts. Distributional paraphrasing [Marton et al. 2009a] has wider applicability, is more language-independent, but doesn't benefit from any linguistic knowledge. Nevertheless, we show that using distributional paraphrasing can yield greater gains in translation tasks. We report method improvements leading to higher gains than previously published, of almost 2 B
leu
points, and provide implementation details, complexity analysis, and further insight into this method.
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Theoretical Computer Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献