Concept and Attention-Based CNN for Question Retrieval in Multi-View Learning

Author:

Wang Pengwei1ORCID,Ji Lei2,Yan Jun2,Dou Dejing3,Silva Nisansa De3,Zhang Yong4,Jin Lianwen1

Affiliation:

1. South China University of Technology, Guangzhou, China

2. Microsoft Research Asia, Beijing, China

3. University of Oregon, Eugene, OR, US

4. Weber State University, Ogden, UT, US

Abstract

Question retrieval, which aims to find similar versions of a given question, is playing a pivotal role in various question answering (QA) systems. This task is quite challenging, mainly in regard to five aspects: synonymy, polysemy, word order, question length, and data sparsity. In this article, we propose a unified framework to simultaneously handle these five problems. We use the word combined with corresponding concept information to handle the synonymy problem and the polysemous problem. Concept embedding and word embedding are learned at the same time from both the context-dependent and context-independent views. To handle the word-order problem, we propose a high-level feature-embedded convolutional semantic model to learn question embedding by inputting concept embedding and word embedding. Due to the fact that the lengths of some questions are long, we propose a value-based convolutional attentional method to enhance the proposed high-level feature-embedded convolutional semantic model in learning the key parts of the question and the answer. The proposed high-level feature-embedded convolutional semantic model nicely represents the hierarchical structures of word information and concept information in sentences with their layer-by-layer convolution and pooling. Finally, to resolve data sparsity, we propose using the multi-view learning method to train the attention-based convolutional semantic model on question–answer pairs. To the best of our knowledge, we are the first to propose simultaneously handling the above five problems in question retrieval using one framework. Experiments on three real question-answering datasets show that the proposed framework significantly outperforms the state-of-the-art solutions.

Funder

National Key Research 8 Development Plan of China

Guangdong NSF

NSFC

GZSTP

GDSTP

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3