Lightening the Load with Highly Accurate Storage- and Energy-Efficient LightNNs

Author:

Ding Ruizhou1,Liu Zeye1,Blanton R. D. (Shawn)1,Marculescu Diana1

Affiliation:

1. Carnegie Mellon University, Forbes Avenue, Pittsburgh, PA, USA

Abstract

Hardware implementations of deep neural networks (DNNs) have been adopted in many systems because of their higher classification speed. However, while they may be characterized by better accuracy, larger DNNs require significant energy and area, thereby limiting their wide adoption. The energy consumption of DNNs is driven by both memory accesses and computation. Binarized neural networks (BNNs), as a tradeoff between accuracy and energy consumption, can achieve great energy reduction and have good accuracy for large DNNs due to their regularization effect. However, BNNs show poor accuracy when a smaller DNN configuration is adopted. In this article, we propose a new DNN architecture, LightNN, which replaces the multiplications to one shift or a constrained number of shifts and adds. Our theoretical analysis for LightNNs shows that their accuracy is maintained while dramatically reducing storage and energy requirements. For a fixed DNN configuration, LightNNs have better accuracy at a slight energy increase than BNNs, yet are more energy efficient with only slightly less accuracy than conventional DNNs. Therefore, LightNNs provide more options for hardware designers to trade off accuracy and energy. Moreover, for large DNN configurations, LightNNs have a regularization effect, making them better in accuracy than conventional DNNs. These conclusions are verified by experiment using the MNIST and CIFAR-10 datasets for different DNN configurations. Our FPGA implementation for conventional DNNs and LightNNs confirms all theoretical and simulation results and shows that LightNNs reduce latency and use fewer FPGA resources compared to conventional DNN architectures.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference48 articles.

1. YodaNN: An Ultra-Low Power Convolutional Neural Network Accelerator Based on Binary Weights

2. D. Dua and E. Karra Taniskidou. 2017. UCI Machine Learning Repository. University of California School of Information and Computer Science. http://archive.ics.uci.edu/ml. D. Dua and E. Karra Taniskidou. 2017. UCI Machine Learning Repository. University of California School of Information and Computer Science. http://archive.ics.uci.edu/ml.

3. ImageNet: A large-scale hierarchical image database

4. New types of deep neural network learning for speech recognition and related applications: an overview

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3