QUIDAM: A Framework for Qu ant i zation-aware D NN A ccelerator and M odel Co-Exploration

Author:

Inci Ahmet1ORCID,Virupaksha Siri1ORCID,Jain Aman1ORCID,Chin Ting-Wu1ORCID,Thallam Venkata1ORCID,Ding Ruizhou1ORCID,Marculescu Diana2ORCID

Affiliation:

1. Carnegie Mellon University, Pittsburgh, PA, USA

2. Carnegie Mellon University, Pittsburgh, PA and The University of Texas at Austin, Austin, TX, USA

Abstract

As the machine learning and systems communities strive to achieve higher energy efficiency through custom deep neural network (DNN) accelerators, varied precision or quantization levels, and model compression techniques, there is a need for design space exploration frameworks that incorporate quantization-aware processing elements into the accelerator design space while having accurate and fast power, performance, and area models. In this work, we present QUIDAM , a highly parameterized quantization-aware DNN accelerator and model co-exploration framework. Our framework can facilitate future research on design space exploration of DNN accelerators for various design choices such as bit precision, processing element type, scratchpad sizes of processing elements, global buffer size, number of total processing elements, and DNN configurations. Our results show that different bit precisions and processing element types lead to significant differences in terms of performance per area and energy. Specifically, our framework identifies a wide range of design points where performance per area and energy varies more than 5× and 35×, respectively. With the proposed framework, we show that lightweight processing elements achieve on par accuracy results and up to 5.7× more performance per area and energy improvement when compared to the best 16-bit integer quantization–based implementation. Finally, due to the efficiency of the pre-characterized power, performance, and area models, QUIDAM can speed up the design exploration process by three to four orders of magnitude as it removes the need for expensive synthesis and characterization of each design.

Funder

NSF CCF

NSF CSR

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3