Online Deep Ensemble Learning for Predicting Citywide Human Mobility

Author:

Fan Zipei1,Song Xuan2,Xia Tianqi1,Jiang Renhe1,Shibasaki Ryosuke1,Sakuramachi Ritsu3

Affiliation:

1. University of Tokyo, Center for Spatial Information Science, Kashiwa, Japan

2. University of Tokyo, Center for Spatial Information Science, Kashiwa, Japan, National Institute of Advanced Industrial Science and Technology, Artificial Intelligence Research Center, Tokyo, Japan

3. Zenrin DataCom Co. Ltd. Tokyo, Japan

Abstract

Predicting citywide human mobility is critical to an effective management and regulation of city governance, especially during a rare event (e.g. large event such as New Year's celebration or Comiket). Classical models can effectively predict routine human mobility, but irregular mobility during a rare event (precedented or unprecedented), which is much more difficult to model, has not drawn sufficient attention. Moreover, the complexity and non-linearity of human mobility hinders a simple model from making an accurate prediction. Bearing these facts in mind, we propose a novel online gating neural network framework with two phases. In the offline training phase, we train a gated recurrent unit-based human mobility predictor for each day in our training set, while in the online predicting phase, we construct an online adaptive human mobility predictor as well as a gating neural network that switches among the pre-trained predictors and the online adaptive human predictor. Our approach was evaluated using a real-world GPS-log dataset from Tokyo and Osaka and achieved a higher prediction accuracy than baseline models.

Funder

Japan?s Ministry of Education, Culture, Sports, Science, and Technology

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Reference28 articles.

1. Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dandelion Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. https://www.tensorflow.org/ Software available from tensorflow.org. Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dandelion Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. https://www.tensorflow.org/ Software available from tensorflow.org.

2. Estimation and Prediction of Time-Dependent Origin-Destination Flows with a Stochastic Mapping to Path Flows and Link Flows

3. Bike sharing station placement leveraging heterogeneous urban open data

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3