Increasing the Measured Effective Quantum Volume with Zero Noise Extrapolation

Author:

Pelofske Elijah1ORCID,Russo Vincent2ORCID,LaRose Ryan34ORCID,Mari Andrea35ORCID,Strano Dan3ORCID,Bärtschi Andreas1ORCID,Eidenbenz Stephan1ORCID,Zeng William36ORCID

Affiliation:

1. CCS-3 Information Sciences, Los Alamos National Laboratory, Los Alamos, United States

2. Unitary Fund, San Francisco, United States

3. Unitary Fund, San Francisco United States

4. Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne Switzerland

5. Physics Division, School of Science and Technology, Università di Camerino, Camerino Italy

6. Goldman Sachs and Co, New York, United States

Abstract

Quantum Volume is a full-stack benchmark for near-term quantum computers. It quantifies the largest size of a square circuit which can be executed on the target device with reasonable fidelity. Error mitigation is a set of techniques intended to remove the effects of noise present in the computation of noisy quantum computers when computing an expectation value of interest. Effective quantum volume is a proposed metric that applies error mitigation to the quantum volume protocol in order to evaluate the effectiveness not only of the target device but also of the error mitigation algorithm. Digital Zero-Noise Extrapolation (ZNE) is an error mitigation technique that estimates the noiseless expectation value using circuit folding to amplify errors by known scale factors and then extrapolating computed expectation values to the zero-noise limit. Here we demonstrate that ZNE, with global and local unitary folding with fractional scale factors, in conjunction with dynamical decoupling, can increase the effective quantum volume over the vendor-measured quantum volume. Specifically, we measure the effective quantum volume of four IBM Quantum superconducting processor units, obtaining values that are larger than the vendor-measured quantum volume on each device. This is the first such increase reported.

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3