Re-examining the quantum volume test: Ideal distributions, compiler optimizations, confidence intervals, and scalable resource estimations

Author:

Baldwin Charles H.1ORCID,Mayer Karl1,Brown Natalie C.1,Ryan-Anderson Ciarán1,Hayes David1

Affiliation:

1. Quantinuum, 303 S. Technology Ct, Broomfield, Colorado 80021, USA

Abstract

The quantum volume test is a full-system benchmark for quantum computers that is sensitive to qubit number, fidelity, connectivity, and other quantities believed to be important in building useful devices. The test was designed to produce a single-number measure of a quantum computer's general capability, but a complete understanding of its limitations and operational meaning is still missing. We explore the quantum volume test to better understand its design aspects, sensitivity to errors, passing criteria, and what passing implies about a quantum computer. We elucidate some transient behaviors the test exhibits for small qubit number including the ideal measurement output distributions and the efficacy of common compiler optimizations. We then present an efficient algorithm for estimating the expected heavy output probability under different error models and compiler optimization options, which predicts performance goals for future systems. Additionally, we explore the original confidence interval construction and show that it underachieves the desired coverage level for single shot experiments and overachieves for more typical number of shots. We propose a new confidence interval construction that reaches the specified coverage for typical number of shots and is more efficient in the number of circuits needed to pass the test. We demonstrate these savings with a QV=210 experimental dataset collected from Quantinuum System Model H1-1. Finally, we discuss what the quantum volume test implies about a quantum computer's practical or operational abilities especially in terms of quantum error correction.

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3