An efficient B-tree layer implementation for flash-memory storage systems

Author:

Wu Chin-Hsien1,Kuo Tei-Wei1,Chang Li Ping2

Affiliation:

1. National Taiwan University, Taipei, Taiwan, ROC

2. National Chiao-Tung University, Hsin Chu, Taiwan, ROC

Abstract

With the significant growth of the markets for consumer electronics and various embedded systems, flash memory is now an economic solution for storage systems design. Because index structures require intensively fine-grained updates/modifications, block-oriented access over flash memory could introduce a significant number of redundant writes. This might not only severely degrade the overall performance, but also damage the reliability of flash memory. In this paper, we propose a very different approach, which can efficiently handle fine-grained updates/modifications caused by B-tree index access over flash memory. The implementation is done directly over the flash translation layer (FTL); hence, no modifications to existing application systems are needed. We demonstrate that when index structures are adopted over flash memory, the proposed methodology can significantly improve the system performance and, at the same time, reduce both the overhead of flash-memory management and the energy dissipation. The average response time of record insertions and deletions was also significantly reduced.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3