Hyper: A High-Performance and Memory-Efficient Learned Index via Hybrid Construction

Author:

Zhang Shunkang1ORCID,Qi Ji2ORCID,Yao Xin3ORCID,Brinkmann André4ORCID

Affiliation:

1. Hong Kong University of Science and Technology, Hong Kong, Hong Kong

2. Institute of Software, Chinese Academy of Sciences, Beijing, China

3. Huawei Theory Lab, Hong Kong, Hong Kong

4. Johannes Gutenberg University Mainz, Mainz, Germany

Abstract

Learned indexes use machine learning techniques to improve index construction. However, they often face a fundamental trade-off between performance and memory consumption, especially in dynamic environments with frequent insert and delete operations. This trade-off stems from the construction approaches used in learned indexes: The top-down approach increases performance at the cost of significant memory overhead, while the bottom-up approach focuses on memory efficiency but introduces performance issues due to prediction errors. % A unified solution that simultaneously optimizes performance and memory consumption in dynamic data management scenarios is therefore highly desirable. We propose Hyper, a highly efficient learned index with a novel two-phase hybrid construction approach. Our approach combines bottom-up construction for leaf nodes with top-down construction for inner nodes to achieve an optimal balance between performance and memory consumption. Hyper effectively handles concurrent writes and structure adjustments without sacrificing query performance. We evaluated Hyper on both simple and complex real-world datasets and compared it to seven state-of-the-art learned indexes and several traditional data structures for dynamic workloads. The evaluation results show that Hyper achieves a remarkable performance boost of up to 3.75× with significantly reduced index memory consumption of up to 1610× in the single-thread evaluation. In high concurrency scenarios, Hyper even achieves improvements up to 5.73×, 3.72×, and 3.99× in read-only, read-write, and write-only workloads.

Funder

National Key R&D Program of China

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3