On the Robustness of Metric Learning: An Adversarial Perspective

Author:

Huai Mengdi1ORCID,Zheng Tianhang2,Miao Chenglin3,Yao Liuyi4ORCID,Zhang Aidong1

Affiliation:

1. University of Virginia, Charlottesville, VA

2. University of Toronto, Toronto, Canada

3. University of Georgia, Athens, GA

4. Alibaba Group, Hangzhou, Zhejiang, China

Abstract

Metric learning aims at automatically learning a distance metric from data so that the precise similarity between data instances can be faithfully reflected, and its importance has long been recognized in many fields. An implicit assumption in existing metric learning works is that the learned models are performed in a reliable and secure environment. However, the increasingly critical role of metric learning makes it susceptible to a risk of being malicious attacked. To well understand the performance of metric learning models in adversarial environments, in this article, we study the robustness of metric learning to adversarial perturbations, which are also known as the imperceptible changes to the input data that are crafted by an attacker to fool a well-learned model. However, different from traditional classification models, metric learning models take instance pairs rather than individual instances as input, and the perturbation on one instance may not necessarily affect the prediction result for an instance pair, which makes it more difficult to study the robustness of metric learning. To address this challenge, in this article, we first provide a definition of pairwise robustness for metric learning, and then propose a novel projected gradient descent-based attack method (called AckMetric) to evaluate the robustness of metric learning models. To further explore the capability of the attacker to change the prediction results, we also propose a theoretical framework to derive the upper bound of the pairwise adversarial loss. Finally, we incorporate the derived bound into the training process of metric learning and design a novel defense method to make the learned models more robust. Extensive experiments on real-world datasets demonstrate the effectiveness of the proposed methods.

Funder

US National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference75 articles.

1. Metric transfer learning via geometric knowledge embedding;Ahmadvand Mahya;Applied Intelligence,2020

2. Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis, Aditya Nori, and Antonio Criminisi. 2016. Measuring neural net robustness with constraints. In Proceedings of the NeurIPS.

3. Curriculum adversarial training;Cai Qi-Zhi;arXiv:1805.04807,2018

4. Towards Evaluating the Robustness of Neural Networks

5. Adversarial Metric Learning

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3