Enforcing isolation and ordering in STM

Author:

Shpeisman Tatiana1,Menon Vijay1,Adl-Tabatabai Ali-Reza1,Balensiefer Steven2,Grossman Dan2,Hudson Richard L.1,Moore Katherine F.2,Saha Bratin1

Affiliation:

1. Intel Corporation, Santa Clara, CA

2. University of Washington, Seattle, WA

Abstract

Transactional memory provides a new concurrency control mechanism that avoids many of the pitfalls of lock-based synchronization. High-performance software transactional memory (STM) implementations thus far provide weak atomicity : Accessing shared data both inside and outside a transaction can result in unexpected, implementation-dependent behavior. To guarantee isolation and consistent ordering in such a system, programmers are expected to enclose all shared-memory accesses inside transactions. A system that provides strong atomicity guarantees isolation even in the presence of threads that access shared data outside transactions. A strongly-atomic system also orders transactions with conflicting non-transactional memory operations in a consistent manner. In this paper, we discuss some surprising pitfalls of weak atomicity, and we present an STM system that avoids these problems via strong atomicity. We demonstrate how to implement non-transactional data accesses via efficient read and write barriers, and we present compiler optimizations that further reduce the overheads of these barriers. We introduce a dynamic escape analysis that differentiates private and public data at runtime to make barriers cheaper and a static not-accessed-in-transaction analysis that removes many barriers completely. Our results on a set of Java programs show that strong atomicity can be implemented efficiently in a high-performance STM system.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference57 articles.

1. Compiler and runtime support for efficient software transactional memory

2. Shared memory consistency models: a tutorial

3. J. Aldrich E. G. Sirer C. Chambers and S. Eggers. Comprehensive synchronization elimination for Java. Sci. Comput. Programming 47(2--3) May-June 2003. 10.1016/S0167-6423(02)00129-6 J. Aldrich E. G. Sirer C. Chambers and S. Eggers. Comprehensive synchronization elimination for Java. Sci. Comput. Programming 47(2--3) May-June 2003. 10.1016/S0167-6423(02)00129-6

4. E. Allen D. Chase J. Hallett V. Luchangco J.-W. Maessen S. Ryu G. L. Steele Jr. and STobin-Hochstadt. The Fortress language specification version 1.0&$945; http://research.sun.com/projects/plrg/fortress.pdf 2006. E. Allen D. Chase J. Hallett V. Luchangco J.-W. Maessen S. Ryu G. L. Steele Jr. and STobin-Hochstadt. The Fortress language specification version 1.0&$945; http://research.sun.com/projects/plrg/fortress.pdf 2006.

5. Unbounded Transactional Memory

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modular transactions;Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming;2019-02-16

2. The semantics of transactions and weak memory in x86, Power, ARM, and C++;Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation;2018-06-11

3. Democratizing transactional programming;Communications of the ACM;2014-01

4. The Cost of Privatization in Software Transactional Memory;IEEE Transactions on Computers;2013-12

5. Shared-Memory Synchronization;Synthesis Lectures on Computer Architecture;2013-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3